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Abstract: This article presents a comprehensive empirical and theoretical evaluation of an evolutionary optimization algorithm 

designed to locate multiple equilibria in game-theoretic models. Building upon a general-purpose framework established in [1], 

the algorithm is extended to complex strategic scenarios, including mixed strategies, dynamic environments, and high-

dimensional strategy spaces. Its performance is rigorously analyzed across various models, examining the impact of parameters  

such as population size and mutation rate on convergence dynamics. 

The results demonstrate the algorithm's robustness in identifying Evolutionarily Stable Strategies (ESS) and navigating 

multiple equilibria, even for challenging scenarios. Theoretical and empirical evidence support its effectiveness. These find ings 

have significant implications for modeling strategic behavior in economics and social sciences. 

Keywords: Game theory, evolutionary algorithms, Nash equilibrium, prisoner's dilemma, computational modeling, 

strategic interactions, multiple equilibria, genetic algorithm, evolutionary game theory, evolutionary stable 

strategies (ESS), algorithmic game theory, agent-based modeling, convergence dynamics. 

1 Introduction 

Accurately predicting outcomes in strategic interactions is a core challenge in game theory, mainly when dealing with complex  

social and economic systems. While traditional frameworks such as Nash Equilibrium [2] have provided valuable insights, they 

often prove insufficient in scenarios characterized by multiple equilibria. This shortcoming limits game-theoretic models’ 

explanatory and predictive power, especially when agents make decisions based on uncertainty and incomplete information.  

Recent developments in evolutionary game theory have introduced computational methodologies that systematically navigate 

the strategy space to identify multiple equilibria [3], [4].  Evolutionary algorithms offer a versatile framework for equilib rium 
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analysis by simulating dynamic interactions among agents. Nevertheless, these algorithms frequently encounter difficulties 

with convergence in high-dimensional strategy spaces and often require meticulous parameter tuning, which constrains their 

practical application [1] [5] [6]. For instance, while coevolutionary algorithms have demonstrated efficacy in identifying Nash 

equilibria in specific models like symmetric Cournot games, [7] [8], their application has largely been restricted to limited  

scenarios such as two-player or symmetrical setups. Furthermore, single-population evolutionary algorithms have shown 

reduced effectiveness in handling cases involving mixed strategies [9]. 

To address these limitations, previous research [1] introduced a general-purpose evolutionary optimization algorithm to 

systematically locate multiple equilibria in non-cooperative game-theoretic models. This algorithm, incorporating elements of 

genetic algorithms and coevolutionary dynamics, was validated on classical benchmarks such as the Prisoner’s Dilemma, 

demonstrating its capability to identify evolutionary stable strategies (ESS) and evolutionary stable sets. Despite these 

promising results, questions remained about the algorithm's robustness and efficiency in more complex, high-dimensional 

scenarios, as well as its sensitivity to different parameter configurations.  

The present study builds on this foundation by extending the algorithm’s empirical and theoretical analysis to explore its 

performance under a broader range of conditions. The algorithm is evaluated across diverse game-theoretic models, focusing 

on the impact of critical parameters such as population size, mutation rates, and interaction frequencies on convergence 

behavior. This assessment aims to deepen an understanding of the algorithm’s operational dynamics and its efficacy in 

navigating intricate strategy spaces. 

Additionally, this research delves into the theoretical aspects of the algorithm’s behavior, particularly its ability to conv erge to 

mixed strategy equilibria and evolutionary stable sets in environments characterized by uncorrelated asymmetry. This paper 

provides formal and empirical evidence to elucidate the conditions under which the algorithm successfully identifies and 

stabilizes multiple equilibria, thereby contributing to a more nuanced understanding of equilibrium selection in complex 

systems. 

The results of this work are applicable in game-theoretic models across various disciplines, including economics, political 

science, and behavioral ecology. By enhancing the computational tools available for analyzing strategic interactions, this st udy 

offers a robust framework for researchers and practitioners seeking to model and predict the behavior of agents operating in 

complex and uncertain environments.  

2 Model and Algorithm Specification 

2.1 Model of Social Interaction 

This study builds upon the general-purpose game-theoretic model introduced in the previous work [1], where agents interact 

strategically within a defined social framework. The core model conceptualizes each agent’s decision -making process as a 

series of choices from a finite set of actions guided by maximizing individual payoffs. An evolutionary optimization algorithm 

is employed to explore the strategy space to address the challenge of locating multiple equilibria in such interactions.  

2.1.1 Model Extensions and Modifications 

To accommodate the model for more complex strategic scenarios, several enhancements to the original model are introduced:  

1. Dynamic Strategy Adaptation: 

o Incorporating a dynamic adaptation mechanism allows agents to adjust their strategies based on the evolving 

behavior of other agents. This modification more accurately captures the iterative nature of real-world 

decision-making processes, especially in environments with changing conditions or incomplete information. 

2. Handling Mixed Strategies: 

o Including mixed strategies expands the model beyond the original focus on pure strategy. Agents can now 

select probabilistic combinations of actions, providing a more realistic representation of strategic interactions. 

This is especially useful in scenarios where pure strategies are insufficient to capture the complexity of agent 

behavior.  

3. Extended Parameter Space: 

o Expanding the model's parameter range introduces stochastic elements, adding randomness to agent decision-

making and payoff outcomes. This change enables a more comprehensive exploration of strategy spaces and 

offers insights into equilibrium stability under varied conditions. 
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2.2 Notation 

The notation used in this article: 

 

Social interaction is defined as a non-cooperative game characterized by the following elements: 

 

2.3 Equilibrium Definition  

In game-theoretic models, an equilibrium represents a state where no agent can improve their payoff by unilaterally changing 

their strategy, given the strategies of other agents. This section introduces new equilibrium concepts tailored to the curren t 

study’s focus on mixed strategies and complex agent interactions, building on the foundational definitions provided in the 

previous work [1]. 

 

2.3.1 Nash Equilibrium (NE): A Nash equilibrium is a strategy profile 𝛷 = (𝜙1, 𝜙2, … , 𝜙𝑛) such that no agent can improve 

their expected payoff by unilaterally changing their strategy. Formally, for each agent 𝑖 and any alternative strategy 

𝜙𝑖
′ ≠ 𝜙𝑖: 

𝐸[𝑝𝑖(𝜙𝑖, 𝜙−𝑖)]  ≥   𝐸[𝑝𝑖(𝜙𝑖
′
 
, 𝜙−𝑖)] 
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2.3.2 Evolutionary Stable Strategy (ESS): An ESS is a refinement of Nash Equilibrium used in evolutionary game theory. 

It represents a strategy 𝜙 
∗ that, if adopted by most of the population, cannot be invaded by any alternative strategy 

𝜙𝑖
′. For 𝜙 

∗ to be evolutionarily stable, it must satisfy: 

𝐸[𝑝𝑖(𝜙 
∗, 𝜙 

∗)]  ≥   𝐸[𝑝𝑖(𝜙 
′
 
, 𝜙 

∗)] 

    for all 𝜙 
′ ≠ 𝜙 

∗. 

Mixed Strategy Equilibrium (MSE): Mixed strategies allow agents to choose probabilistic combinations of actions, 

representing complex behavioral patterns more accurately than pure strategies. A Mixed Strategy Equilibrium occurs when 

agents assign probabilities to multiple actions. For a strategy profile 𝛷 = (𝜙1, 𝜙2, … , 𝜙𝑛), each agent's strategy 𝜙𝑖  maximizes 

their expected payoff given the strategies of others. For each agent 𝑖: 

𝐸[𝑝𝑖(𝜙𝑖, 𝜙−𝑖)]  ≥   𝐸[𝑝𝑖(𝜙𝑖
′
 
, 𝜙−𝑖)] 

2.3.3 where 𝜙𝑖 is a probability distribution over 𝛥𝑖. 

In the model, agents are assumed to be able to choose their actions according to any rules. These rules are represented for e ach 

agent by a set of probability distributions over the agent's decision sets, each of which is called a strategy. This incorpor ates 

mixed strategies into the model. 

∀𝑑 ∈ 𝛥, ∃𝜙: 𝜙 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑑: ∀𝜙: 𝜙 ∈ 𝛷𝛷𝑖 ≔ 𝑠𝑒𝑡 𝑜𝑓 𝜙 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑑

∈ 𝐷𝑖 , |𝛷𝑖| = |𝐷𝑖| 

2.3.4 Evolutionary Stable Set (ESS Set): An ESS Set is a collection of strategy profiles that remains stable under 

evolutionary dynamics. It generalizes the ESS concept to polymorphic populations, where multiple strategies coexist 

in stable proportions. For an ESS Set 𝑆, any minor deviation by a subset of the population from 𝛷 ∈ 𝑆 does not result 

in a shift outside of 𝑆. 

2.3.5 Convergence Dynamics and Stability Criteria: A strategy profile 𝛷 is stable if small perturbations in the strategy of 

any agent do not lead to an increase in expected payoff. Formally, for any small change 𝜖 in strategy 𝜙𝑖: 

 
where 𝜖 represents a small deviation in strategy 𝜙𝑖. 

2.3.6 Agents’ Optimization Problem 

Agents aim to maximize their expected payoffs by tweaking their strategies. Therefore, each agent solves the following 

optimization problem: 

 

2.3.7 Stable State 

A stable state (equilibrium) in the model is defined as a state where no agent could increase their expected payoff, given th at 

other strategies are stable. At least one such point always exists because, in any game-theoretic model, a Nash equilibrium exists, 

which this condition holds by definition [2]. 

 

2.3.8 Optimization Dynamic 

Agents are assumed to change their strategies by small perturbations with a drift towards strategies yielding higher expected  

payoff until there would be no possible perturbations yielding higher expected payoff than current strategy yields. In this model, 

agents always use totally mixed strategies due to the non-zero probability of perturbing their strategy by selecting a previously 

unused action.  
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2.4 Algorithm Outline 

Genetic Algorithms (GAs) are a subclass of Evolutionary Algorithms (EAs), which are optimization techniques inspired by 

Darwinian evolution. In GAs, solutions are represented as individuals within a population. Each individual (or species) encod es 

a potential solution in the search space and is evaluated using a fitness function—for example, the value of an objective function 

in maximization tasks. The algorithm evolves the population over successive generations, favoring individuals with higher fitness 

while maintaining diversity. The key steps of a GA are: 

1. Initialization: Generate an initial population uniformly distributed across the search space to ensure broad exploration.  

2. Evaluation: Assign each individual a fitness value based on their performance on the target function, differentiating species  

within the population. 

3. Selection: Use methods like the roulette wheel or tournament selection to select a subset of high-fitness individuals to serve 

as parents for the next generation. 

4. Crossover: Produce offspring by combining traits of selected parents. For instance, averaging parent components can create 

new individuals in real-valued vector representations. 

5. Mutation: Introduce random changes to some traits of individuals (including offspring) to explore new areas of the search 

space and maintain genetic diversity, preventing premature convergence. 

6. Replacement: Form the new generation by combining parents and offspring, often maintaining a constant population size. 

Strategies like elitism may retain the best individuals. 

GAs evolve the population toward optimal or near-optimal solutions by iteratively applying these steps. The balance between 

exploiting high-fitness individuals and exploring new possibilities allows GAs to effectively navigate complex search spaces.  

As input, the algorithm expects a game model as outlined in the Model of Social Interaction section. It is important to highl ight 

that for the algorithm to work, it is sufficient to know only the structure of the action set Δ (agents and their decision se ts) and 

an interface to compute the corresponding payoffs; there is no need to know how these payoffs are calculated. As output, the 

algorithm provides a found equilibrium or a statement indicating failure to find one. In either case, the output should cont ain a 

log of convergence dynamics, which includes individuals' encodings in each generation and their fitness values. This algorith m 

can be initiated multiple times to find multiple equilibria. 

5 Results 

5.1 Multiplicity of Evolutionary Stable Strategies Definitions 

As has been shown by Rykunov D.P. [1], the algorithm converges to ESS. However, the model employs mixed-strategy 

approaches, which are not widely used in the evolutionary game theory literature and introduce unique properties of system 

dynamics. 

First, it should be noted that there are two definitions of Evolutionarily Stable Strategy (ESS): the classic one by [10] and  the 

stricter one by [9]. These definitions differ slightly and do not always coincide. Due to the lack of prior work on this topi c, there 

is ambiguity regarding which equilibrium concept an algorithm like the one proposed here converges to. An empirical experiment 

involving a game called "Harm thy Neighbor" is arranged to determine this. This game has two Nash Equilibria in pure stra tegies: 

[A; A] and [B; B]. According to the ESS definition by [10], both Nash Equilibria are ESS. In contrast, under the ESS definiti on 

by [9], neither of the Nash Equilibria is ESS—there is no ESS in this game. 
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  Player 2 

  A B 

Play

er 1 

A 2; 2 1; 2 

B 2; 1 2; 2 

Figure 1: HarmThyNeighbour game's payoff matrix 

To determine to which definition of an Evolutionarily Stable Strategy (ESS) the algorithm converges, the game is run without 

termination criteria. The expectation is that if the algorithm converges to the stricter definition of ESS, it will fail to r each a 

stable state in this setup. Even if it occasionally attains a generation where the best-fitted solution represents one of the Nash 

Equilibria (NE), it will diverge from it, resulting in the oscillating behavior of the population. Conversely, consistent convergence 

behavior will be observed if the algorithm converges to the classic definition of ESS. The population would adhere to one of the 

equilibria, and the entire population—not just the best-fitted solution—would converge to it. 

According to the base model defined in [1], the algorithm depends on five parameters: POPSIZE, NPAIRS, NGAMES, 

DROPOUT_RATE, and MUTATION_MAGNITUDE. For this experiment, these parameters are set based on the convergence 

results from the prior work [1]:  

Algorithm run parameters: popsize: 54, npairs: 20, ngames: 1, dropout_rate: 37, mutation_magnitude: 8  

 

 

Figure 2: Convergence to an ESS of classic definition 

Data obtained through the algorithm’s run is presented in Figure 2. Each graph shows the dynamic evolution of equilibrium 

strategies set for the model by demonstrating two lines: mixed strategy of the first player as a frequency of playing [𝐴] move and 
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mixed strategy of the second player as a frequency of playing [B] move. In the first row, strategies of best -fitted individuals in 

each generation are depicted, while in the second row, the average strategy of the subpopulations is shown. Graphs differ by 

column only in the number of generations plotted.  

From the graph, it could be readily seen that both best-fitted individuals’ strategies and average subpopulations’ strategies 

converge to one of the expected equilibriums [𝐵; 𝐵] – best-fitted individuals at 7th generation (never diverge in further 

generations) and average subpopulations’ strategies at approximately 15 th generation (fluctuate slightly around equilibrium point 

for all generations, never diverging significantly).  It shows that the algorithm can converge to an ESS of the classic defin ition 

of [10]. 

5.2 Note on Convergence of Mixed Strategies Equilibria 

5.2.1 Mixed Evolutionary Stable Strategy 

ESS was defined originally for pure-strategist symmetrical game-theoretic models of coevolution in terms of replicator dynamic 

in differential equations [10] and stood for stable proportions of pure-strategist individuals with specific strategies in population; 

therefore, it could be treated as a stable state of population. Later in the work of [11], the ESS concept was revisited; thi s work 

introduced a stricter definition and presented an analysis of actual individuals’ strategies in the context of ESS; al so, the 

distinction between pure-strategist and mixed-strategist models was emphasized. The fundamental definition of an ESS suggests 

that it represents “an individual phenotype which can be established and maintained predominantly by natural selection in 

evolutionary competition with alternative types” [11] [12], which is presumed to be the case for both pure -strategist and mixed-

strategist models. Pure ESS thus stands for monomorphic populations (populations in which only one pure strategy is presented ), 

and mixed ESS stands for polymorphic populations (populations in which more than one pure strategy – regardless of being 

included in a mixed strategy or standing by itself – are presented). This means that, as with the case of pure-strategist models, 

mixed ESS in a mixed-strategist model suggests that a stable set of individual phenotypes must be presented in the population.  

One of the main findings on the topic is that mixed ESS could only exist in mixed-strategist models if mixed strategies payoff is 

a linear combination of payoffs of its components if mixed strategies are sufficiently few in number [13]. Sufficiently few in this 

context means the space of mixed strategies available to individuals is of larger dimensionality than the space of possible p ure 

strategies. This result (absence of mixed ESS) holds for virtually all mixed-strategist game-theoretic models. It is important 

because the algorithm uses mixed strategies by design, hence treating all classic game-theoretic problems formulated as Normal 

Form Games and Games in Extensive Form as mixed-strategist models. On the other hand, this result is a feature of ESS and is 

relevant only to a particular class of game-theoretic models – linear models. Indeed, the algorithm proposed in this work can also 

work with non-linear models. 

5.2.2 Mixed Evolutionary Stable Set as an Alternative to ES Strategy 

As an extension of the ESS concept, the Evolutionary Stable Set was introduced in [9]. ES set concept defines stability for a  

population as a whole, characterized by a population strategy that is a weighted average of the phenotypical content of the 

population, e.g., the average of individuals’ strategies. In the context of mixed-strategist models, an arbitrarily large number of 

population states could capture each population strategy. Population state is defined as a particular phenotypical profile of  a 

population, e.g., a set of individuals with specific strategies. 

The stability of ES sets appears in the presence of a compact space of population states, from which, once converged, the 

population would not diverge. In this case, the state of a population converges to an ES set and is expected to drift around the 

ES set, preserving a stable population strategy. 

In the context of mixed-strategist models, it is helpful to introduce a degenerate model, which is the same model treated as a 

pure-strategist one. It is shown that for a mixed-strategist model, every ESS of the model’s degenerate corresponds to an ES set 

of the mixed-strategist model [13]. Because of the definition of ESS, particularly its uniqueness in its neighborhood, the 

corresponding ES set would represent just a single population strategy. Therefore, the suggested algorithm could capture a mixed 

ESS of a degenerate model through population dynamics.  

5.2.3 Uncorrelated Asymmetry 

An uncorrelated asymmetry is a concept introduced in the context of evolutionary game theory for symmetrical games 

representing coevolutionary dynamics [10]. It could be interpreted as follows: presence or absence of uncorrelated asymmetry 

determines whether agents in a game-theoretic model know which role they play in it; alternatively, whether agents know which 

role they have been assigned; or whether their strategies could be dependent on roles they have been assigned. It is essentia l in 

symmetrical games. Due to [14] in the presence of information asymmetry (uncorrelated asymmetry), every ESS (if any exists) 

is a strict Nash Equilibrium [15].  

The proposed model introduces uncorrelated asymmetry by design, establishing separate subpopulations for each decision -set in 

a given model, thereby creating distinct subpopulations for each player. Species evolving in separate subpopulations evolve 
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independently from each other. In each fitness evaluation, these species play the same roles. As stated in [14], “A sufficien t 

condition for information asymmetry is satisfied if the two opponents in a contest always have roles which are different from 

each other.” 

To tackle game-theoretic models in a setup without uncorrelated asymmetry, a workaround extension for the algorithm was 

developed. It should be noted that a scenario of an absence of uncorrelated asymmetry is established only for agents with identical 

decision sets, which could naturally represent a case of agents being unaware of their role in fitness evaluation because there i s 

no difference between them by design. The extension's Central idea is to ensure that subpopulations corresponding to decision  

sets united by information symmetry are identical before fitness evaluations. In each generation, one of such subpopulations is 

selected, and other subpopulations of the same information symmetry union are substituted with duplicates of the selected one . 

All decision sets with information symmetry are represented in this setup by the same subpopulation. So, because of the random 

nature of the matching algorithm [1] and identical structure of the decision sets of this subpopulation, it is evaluated as w ith 

random roles assigned unless there is an asymmetry in payoffs between decision sets (this case is not considered in this paper 

and suggested for further research). 

5.2.4 Empirical Results on Convergence to Mixed ESS in the Absence of Uncorrelated Asymmetry 

The algorithm's behavior on the task of locating Mixed ESS is investigated using a classic game from evolutionary game theory  

studies known as "Hawk Dove." It has two pure strategies Nash Equilibria [𝐻𝑎𝑤𝑘;  𝐷𝑜𝑣𝑒] and [𝐷𝑜𝑣𝑒;  𝐻𝑎𝑤𝑘] and one mixed 

Nash Equilibria [(
𝑉

𝐶
) ∗ 𝐻𝑎𝑤𝑘 + (1 −

𝑉

𝐶
) ∗ 𝐷𝑜𝑣𝑒; (

𝑉

𝐶
) ∗ 𝐻𝑎𝑤𝑘 + (1 −

𝑉

𝐶
) ∗ 𝐷𝑜𝑣𝑒], when 𝑉 < 𝐶, for a payoff matrix of the game, 

please refer to Figure 3. In uncorrelated asymmetry, the game has two ESS corresponding to pure NE. Without uncorrelated 

asymmetry, the game has only one ESS corresponding to mixed NE. 

  Player 2 

  Hawk Dove 

Pl

ay

er 

1 

Ha

w

k 

(V-C)/2; (V-C)/2 V; 0 

D

ov

e 

0; V V/2; V/2 

Figure 3: HawkDove game's payoff matrix 

Two models are constructed based on Hawk Dove game with different payoff matrices, resulting in different proportions of 𝑉 ÷
𝐶 Thus, there is a different mixed ESS to capture the difference in the convergence of population strategy to Mixed ESS, if any . 

HawkDoveSkewedHawk model in Figure 4 favors the Hawk strategy in Mixed ESS, and HawkDoveSkewedDove favors the 

Dove strategy in Mixed ESS. 

  Player 2 

  Hawk Dove 

Pl

ay

er 

1 

Ha

w

k 

-2.5; -2.5 15; 0 

D

ov

e 

0; 15 7.5; 7.5 

Figure 4: HawkDoveSkewedHawk model's payoff matrix 
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  Player 2 

  Hawk Dove 

Pl

ay

er 

1 

Ha

w

k 

-7.5; -7.5 5; 0 
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Figure 5: HawkDoveSkewedDove model's payoff matrix 

Two algorithm runs are conducted on each model, with and without uncorrelated asymmetry, for 1000 generations. For each run, 

a graph is constructed to display the best-fitted strategy in the population and the population strategy for each generation. 

Algorithm run parameters: popsize: 54, npairs: 20, ngames: 1, dropout_rate: 18, mutation_magnitude: 8  

 

 

Figure 6: Mixed ESS in HawkDoveSkewedHawk 

Algorithm run parameters: popsize: 54, npairs: 20, ngames: 1, dropout_rate: 18, mutation_magnitude: 8  
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Figure 7: Mixed ESS in HawkDoveSkewedDove 

The data obtained from running the algorithm is presented in four graphs: two graphs in Figure 6 (for the model favoring the 

Hawk strategy in mixed ESS) and two graphs in Figure 7 (for the model favoring the Dove strategy in mixed ESS). Graph sets 

for both models have an identical structure. Graphs on the right-hand side show the algorithm's output running with modification 

simulating an absence of uncorrelated asymmetry. Graphs on the left-hand side show the output of the algorithm running with 

the default setup, thus introducing uncorrelated asymmetry to the model.   

Each graph depicts the dynamic evolution of an equilibrium strategy set for the model by three lines. The first one (light bl ue 

line) – mixed strategy of the best-fitted specie representing the first player as a frequency of playing [𝐻𝑎𝑤𝑘] move.  The second 

(light orange line) – mixed strategy of the best-fitted specie representing the second player as a frequency of playing [𝐻𝑎𝑤𝑘] 
move. The third (bold green line) – average mixed population strategy as a frequency of playing [𝐻𝑎𝑤𝑘] move. 

As expected, under uncorrelated asymmetry both models converged in terms of individuals’ strategies to one of the ESS 

represented by pure NE, in this case – [𝐻𝑎𝑤𝑘;  𝐷𝑜𝑣𝑒]. The same models evaluated in coevolutionary style with a setup of absence 

of uncorrelated asymmetry have shown non-convergence of individual strategies, which could be seen on graphs Figure 6 and 

Figure 7 by the highly volatile random walk process of best-fitted strategy. At the same time, on the same graphs, it could be 

seen clearly, that population strategy represented on the graphs by frequency of [𝐻𝑎𝑤𝑘] pure strategy quickly converges to low 

volatile random walk process around values approximately equal to theoretical Mixed ESS – 0.75 for HawkDoveSkewedHawk 

model and 0.25 for HawkDoveSkewedDove. It demonstrates the possibility of exploring mixed ESS by the proposed algorithm 

and, in general, shows how ES sets could be analyzed by the same means.  

5.3 Multiple Equilibria Statistics 

The proposed algorithm can locate multiple equilibria in game-theoretic models. Employing an Iterated Local Search (ILS) 

approach with random initial seeds effectively explores the solution space. The theoretical foundation of this method aligns with 

propositions from evolutionary game theory, which postulate that player populations converge to Evolutionarily Stable (ES) sets 

when started in their neighborhood [9]. This justifies treating the ILS with random seeds as asymptotically capable of locati ng 

all equilibria of the model. One should develop convergence metrics for the algorithm to utilize the iterated local search method.  

Used as a termination criterion for the search process, a convergence metric could significantly impact the total amount of 

computational resources consumed for the search process. 

Such convergence metrics might differ from one application of the algorithm to another. The following factors should be 

considered while developing termination criteria for the algorithm: demanded level of accuracy in the location of equilibria in 

terms of proportions of false positive and false negative returns and numerical precision of found equilibria position. It is advised 

to change several termination criteria between meta-heuristic ILS iterations, i.e., roughly locating equilibria states, and then 

reinitializing the algorithm in the located spots with different parameters and termination criteria to enhance numerical 

approximation of equilibria. It is also advisable to conduct a supervised preliminary exploration of the problem and the 

algorithm’s performance to accumulate prior knowledge of the problem before initialization of the automated search procedure 

because it might give insights regarding the problem’s structure and guide parameters and termination criteria fine -tuning. 
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6 Conclusions and Further Research 

This study offers a detailed empirical evaluation of an evolutionary optimization algorithm for locating multiple equilibria in 

game-theoretic models. Systematic analysis of its performance across various game scenarios has demonstrated the algorithm’s 

capability to converge to Evolutionarily Stable Strategies (ESS) and handle complex mixed-strategy equilibria. The results 

indicate that the algorithm is robust across various parameter settings, with convergence dynamics significantly influenced b y 

population size, mutation rates, and the number of pairwise interactions. The empirical findings provide valuable insights into 

the algorithm's operational characteristics, particularly in navigating high-dimensional strategy spaces and identifying stable 

outcomes in the presence of multiple equilibria. These insights have practical implications for applying game-theoretic models 

in social sciences and economics, where accurately predicting the behavior of interacting agents is crucial. By leveraging th e 

strengths of evolutionary game theory, this work contributes to a deeper understanding of equilibrium selection and strategic 

stability in complex systems. 
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