Mosquito Repellent Property of *Azadirachta Indica* Extract (Fruit Bark and Seed Kernel)

Wannang N.N
Department of Pharmacology
University Of Jos
Nigeria

Ajayi V.F
Department of Pharmacology
University Of Jos
Nigeria

Ior L. D
Department of Pharmacology
University Of Jos
Nigeria

Dapar L.M.P
Department of Clinical Pharmacy
University Of Jos
Nigeria

Okwori V. A
Department of Pharmacognosy
University Of Jos
Nigeria

Ohemu T
Department of Pharmacognosy
University Of Jos
Nigeria

Abstract— Malaria is a serious public health problem in the tropics. This study, investigated the mosquito repellent effect of the plant *Azadirachta indica* extracts of the seed kernel and fruit bark on human volunteers. Two different mosquito species were used, female anopheles and culex. It was observed that the fruit bark exhibited slight repellent activity, significant at p<0.05 for the number of bites between 0-60 minutes by culex mosquitoes. The seed kernel extract exhibited significant repellent activity, significant at p<0.01 and also the extract was more effective on the female anopheles than on the culex mosquito species.

Index Terms— Malaria, *Azadirachta indica*, Mosquito, female anopheles, culex.

I. INTRODUCTION

Malaria is a mosquito-borne infectious disease of humans and animals caused by eukaryotic pest of the genus *Plasmodium*. The disease results from the multiplication of *Plasmodium* parasites with the red blood cell causing symptoms that typically include fever, headache and severe weakness progressing to coma or death. It is widespread in tropical and sub-tropical regions including most of sub-saharan Africa, Asia and America. Malaria is largely caused by *Plasmodium falciparum* while *Plasmodium vivax*, *Plasmodium ovale* account for few cases (Sutherland *et al.*, 2010) and *Plasmodium malariae* is generally a milder disease that is rarely fatal. *Plasmodium knowlesi* is a zoonosis that causes malaria in macaques but can also infect human (Singh *et al.*, 2004). *Plasmodium falciparum* is the most severe form of malaria which is responsible for the vast majority of death associated with the disease (Snow *et al.*, 2005).

Azadirachta indica is a fast growing, long-live tree with unpleasant smelling wood that’s about 12 meters in height. It has evergreen pinnate leaves and small fragrant yellow-white flowers, followed by green-yellow berries (Zillur and Shamim, 1993). Its name is derived from the Persian word *azadiddiraki* which means noble tree and this plant is native to India and Pakistan. *Azadirachta indica* also known as neem, is a member of the miliaceae family and a botanical cousin of mahogany (Zillur *et al.*, 1996). This plant is reputed to be responsible for the pesticidal, larvicidal, antifeedant or repellent action on various insects (Premila, 2006). The Azadirachtine is found in all parts of the plants but in a higher concentration in the seed.
Azadirachta indica fresh fruits were collected in April 2012 from Langtang L.G.A Plateau state. The fresh fruits were identified and authenticated by Mr Ikechukwu Chijioke of Federal College of Forestry, Jos. The fresh fruits were sun dried for 2 weeks and the seeds were separated from the fruit bark by breaking open the fruit. The seed kernel and the fruit bark were further dried for another two weeks, after which was pounded to granules form using a mortar and pestle. Each granulated samples were weighed and extracted. The two different extracts gave a yield of 7%w/v for seed kernel and 8%w/v for fruit bark extract.

Mosquito Repellent Activity

25 female anopheles mosquitoes were used for this experiment. Arms (3) of human volunteers were coated with a non-fragrance-vaseline (normal saline), which served as negative control for the study. The arms were inserted into each of the mosquito cages at the same time, and observed for the following: the number of mosquito that parched and bite the exposed arm. After the time of duration of 10 minutes, the arms were removed from the mosquito cages; each mosquito was observed and checked for any behavioral change. The subjects were allowed to rest for 30 minutes, and then re-exposure is done without reapplication of the sample. The experiment was repeated for 2 hours. Same treatment was repeated with seed kernel, fruit bark and Odomos (standard repellent). The procedures (above) were repeated using culex mosquito species.

Statistical Analysis

The results were expressed as mean ± standard error of mean. Statistical significance was determined by one way ANOVA followed by Durinett multiple comparison test and values of $P < 0.05$ were considered significant.

III. RESULTS

There was no repellent activity exhibited by the standard drug (Odomos) as well as the extracts on the number of bites between 0-60 minutes and 90-120 minutes by the culex mosquitoes as shown in table 1.

Table 1: Number of bites between 0-120 minutes by culex mosquitoes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 – 60 minutes</th>
<th>90 – 120 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline</td>
<td>13.67± 6.89</td>
<td>11.67± 5.84</td>
</tr>
<tr>
<td>Odomos (standard)</td>
<td>13.67± 1.76</td>
<td>0.67± 0.67</td>
</tr>
<tr>
<td>Extract$_1$ (fruit bark)</td>
<td>4.00± 1.53</td>
<td>3.00± 1.73</td>
</tr>
<tr>
<td>Extract$_1$ (seed kernel)</td>
<td>3.00± 1.00</td>
<td>2.33 ± 1.45</td>
</tr>
</tbody>
</table>

Values expressed as mean±SEM

Table 2 shows that the extract exhibited repellent activity when compared with the standard, significant at $p<0.05$ within the duration of 0-60 minutes while the extracts and the standard showed no repellent activity on the number of bites between 90-120 minutes.

Table 2: Number of bites between 0-120 minutes by culex mosquitoes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 – 60 minutes</th>
<th>90 – 120 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline</td>
<td>7.00± 0.58</td>
<td>3.33± 1.76</td>
</tr>
<tr>
<td>Odomos (standard)</td>
<td>1.67± 1.20*</td>
<td>0.33± 0.33</td>
</tr>
<tr>
<td>Extract$_1$ (fruit bark)</td>
<td>2.00± 1.53*</td>
<td>1.67± 0.88</td>
</tr>
<tr>
<td>Extract$_1$ (seed kernel)</td>
<td>2.00± 0.38*</td>
<td>1.00± 0.58</td>
</tr>
</tbody>
</table>

Values expressed as mean±SEM *(p<0.05)
In Table 3, analysis on the number of perches between 0-60 minutes, the extract exhibited significant repellent activity against the number of perches by the female anophelines mosquitoes at 0-60 minutes. The repellent activity of the extract was similar to that of the standard, on the number of perches between 90-120 minutes which is significant at (p<0.01)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 – 60 minutes</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline</td>
<td>18.62± 1.20</td>
<td>13.00±1.00</td>
</tr>
<tr>
<td>Odomos (standard)</td>
<td>3.67±2.03**</td>
<td>3.67± 0.67**</td>
</tr>
<tr>
<td>Extract1 (fruit bark)</td>
<td>4.67± 2.03**</td>
<td>5.33± 1.03**</td>
</tr>
<tr>
<td>Extract1 (seed kernel)</td>
<td>4.35± 2.52**</td>
<td>3.33±1.76**</td>
</tr>
</tbody>
</table>

Values expressed as mean ±SEM ** (P<0.01)

The standard and extracts showed repellent activity against the number of bites by female anophelines mosquitoes within 0-60 minutes which is significant at (p<0.01) while on the number of bites between 90-120 minutes the extract and standard showed no repellent activity against the number of bites by the female anophelines mosquitoes as shown in Table 4.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Saline</td>
<td>9.00±4.59</td>
</tr>
<tr>
<td>Odomos (standard)</td>
<td>1.33±0.88</td>
</tr>
<tr>
<td>Extract1 (fruit bark)</td>
<td>2.00± 1.15</td>
</tr>
<tr>
<td>Extract1 (seed kernel)</td>
<td>3.00± 1.72</td>
</tr>
</tbody>
</table>

Values expressed as mean ±SEM ** (P< 0.01)

IV. DISCUSSION AND CONCLUSION

Mosquito repellents are designed to make the surfaces unpleasant or unattractive to mosquitoes. They typically contain active ingredient (12%N, N-diethyl-3-methyl benzamide) or (12% N, N-diethyl-benzamide) that repel mosquito (Anne, 2014). Azadirachta, is a powerful insect antifeedant that disrupts metamorphosis as moth larvae at extremely low concentration (Van, 2004). A number of studies have shown that Neem compounds are more effective insect repellent than the widely used synthetic chemical N,N-diethyl-meta toluamide (Farahna et al, 2010).

The mechanism of action of mosquito repellents is that carbondioxide, excretory products and lactic acid present in sweat of warm blooded animals’ acts as an attractive substance for female mosquitoes. The perception of the odor is through chemoreceptors present in the antennae of mosquitoes. The repellents block the lactic acid receptors thus destroying upward flight and as a result, the mosquito lose contact with the host (Ellissa, 2004; Patel, 2012) usually mosquito repellents work by masking human scent or by using a scent which insects naturally avoid. The presence of the odor in the neem seed and kernel oil must have contributed to the repellent action seen in the mosquitoes under study.

Taste molecules also are involved; this suggested that the repellent deters biting and feeding because it activates taste cells that are present on the insect’s tongue, legs and wing margin. When mosquito lands, it tastes the skin of the host with it gustatory receptors before it bites, thus there is avoidance responses not only through the sense of smell but also through the sense of taste. Neem seed and kernel have a punget smell which is similar to garlic and it contain sulphurous compound as reported by Akin,(2010), this attribute to its reduce plague and act as mosquito repellent. In this study, the repellent action of the extract can be attributed to the odor possessed by the extracts and the taste of the extracts.

The neem tree has long been recognized for its unique properties both against insects and in improving health. It is grown in most tropical and sub-tropical areas of the world for shade, raw materials for natural insecticides and medicines. Azadirachtin, a complex tetranorterpenoid limonoid compound from the neem seeds, is the main component responsible for the toxic effects in insects (Mordue and Nisbet, 2000). Hati et al, (1995) had reported that neem (Azadirachta indica) seeds oil in appropriate amount when smeared on the surface of the hand showed excellent repellent action against Aedes aegypti mosquitoes. They found out that the degree of repellency was in increasing order as the amount of oil increased. Similarly, Mishra,(2010) evaluated that there was mosquito repellent action of neem oil at various concentration.

The activeness, after application of the extracts (fruit bark) for the anophelines was less and decreased with time. Alyssa,(2010) observed similar effect of the Neem oil reduces as time passes. Culex mosquitoes are known to be stronger and live longer than female anophelles mosquitoes (Afshin, 2003). The number of bite was more with female anophelles mosquitoes and less with culex mosquitoes. Female anophelles mosquitoes feed on human blood as a source of providing food and protection for their eggs (Degennaro, 2013) while most culex species are partial to biting birds rather than human (Richard, 1977). Similarly, female anophelles species are known to be weaker, having a shorter-life span and hardly survive in cold environment and bites more when compared to the culex mosquitoes species (Williams, 1983) . Degennaro, (2013) stated that there are many different species of mosquitoes and each species has its favorite host(s). The mosquito species that like human blood are Aedes aegypti and
Anopheles mosquitoes. However, this study showed that the extracts (seed kernel) exhibited a repellent efficacy with the culex mosquito species but more with the female anopheles species.

REFERENCES

