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Abstract 

In this paper, we consider the Riemann-Liouville fractional derivative and the Caputo fractional derivative with particular reference 

to the initial conditions necessary for the formulation of fractional differential equations. We further determine the Riemann-Liouville 

and the Caputo fractional derivative of the function f ( ) 1=x   stating their relationship. In conclusion, we use Laplace transform to 

establish a relationship between the Beta and the gamma functions. 
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1.0 Introduction 

In recent years it has turned out that many phenomena in engineering, Physics, Chemistry and other sciences can be 

described by models using Mathematical tools from fractional calculus [6,7,8]. In the 19 th century Abel formulated an 

integral equation which led to the development of fractional integro-differential operators by Liouville and Riemann [1, 2, 3, 

4]. 

In the 20th century, fractional derivatives found application in the study of viscoelasticity; diffusion and fluid dynamics 

problems amongst others with the advent of computers, numerical methods were developed for calculating the approximate 

solution to FDEs leading to an increase in their applications [5, 6]. 

The theory of derivatives and integrals of fractional order, some of the most prominent examples are given in a book of 

Oldham and Spanier [1]. In [ 9 ], the studied in details were description and assessment of numerical methods were described 

by fractional – order derivatives, integrals and differential equations which they provide an algorithm for calculating the 

Mittag-Leffler function which appears in solution to fractional – order differential equations. 

2.0 Formulation of fractional differential equations. 

 

By a first order ordinary fractional differential equation we will mean a fractional differential equation whose derivatives are 

all of order < 1.  

A first order fractional differential equation defined in terms of Riemann-Liouville derivatives of f  on  ba,  integrate 

before differentiating  fDJ
a

−1
 

And the Caputo fractional derivative on  ba,  is differentiable before integrating fDJ
nn 11 ++

, hence, for the Riemann-

Liouville derivatives will require the fractional integral ( )tfJ a
at

−

→

1
lim  as an initial condition while a first order fractional 

ordinary differential equation defined in terms of Caputo derivatives will only require ( )af  as an initial condition. 
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The two derivatives are related by the formula    fDafTfD ama


=− − ;1

 where  afTm ;1−
 is the Taylor polynomial of degree 

1−
m  centered at a  and we shall call fD

a


 the Caputo fractional differential operators of advents, hence, fDJfD

mm

aa

 −
= . 

 

 

3.0 Riemann-Liouville fractional integral of order 0 , of ( )xf  over the interval  ),0 . 

 

The Riemann-Liouville fractional integral of the function f  of order 0 , of ( )xf  over the interval  ),0  is given by 
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 and the condition that f  must satisfy on this interval is given by  ),01Lf  which 

has to be integrated.  Generally, we have that =fJ a
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Example: By the use of Laplace transforms show that 
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Taking the inverse Laplace transform of both sides, we obtain 
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where   0 . 

4.0 Convergence of Riemann-Liouville fractional integral. 

Given that  ( )
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We shall confirm by fractional integration that 
n

gJ
21

0
converges uniformly to gJ

21

0
on the same initial interval.  Where 



0
J  denotes the Riemann-Liouville fractional integral operator of order 0  centered at 0  as follows. 
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If gg n →  uniformly on  1,0  then gJgJ n
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5.0 Fractional differential equations or Laplace transform 

 

Considering the fractional differential equation of the type ,
0

yyD
 −=  ( )

00 yy =  and 10   . First, we recognize 

that the Caputo fractional derivative can be written as a convolution equation 
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Using the notation ( )
−

= yy , we apply the Laplace transform to (4) and the result is obtained as follows. 

( )
( )   ytyt   


−=

−

− '

1

1
, 

( )
  ( ) 

−
−

−=
−

ytyt
 



'

1

1
  

=







−

−

− 01

1
yyS

S


−

− y
  

( )








+
===+

−−
−

−

S

Sy
ySyyS

1

01

0  Taking the inverse Laplace transform, it gives  

( ) ( )( )

 tEyty −= 0       (5) 

 

5.1 Fractional integration 

 

Suppose that ( ) ( )axxf −= , where 0  and let 0n  then,  
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From the definition of the integral, we have 
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Let ( )axsat −+=  then ( )dsaxdt −=  and substituting that into the integral gives  
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5.2 Relationship between Beta function and gamma function 

 

Here we shall use the Laplace transform to establish the relationship between the Beta function and the gamma 

function as presented below: 

Suppose that ( )
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Taking inverse Laplace transform of both sides 
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gives the result. 

6.0 Conclusion  

We conclude that the Riemann-Liouville derivative on  ba, is integrated before differentiating and the Caputo fractional 

derivative on  ba,  is differentiated before integrating. It was also discovered that the Riemann-Liouville derivative will 

require the fractional integral of ( )tfJ a
at

−

→

1
lim

  as a necessary initial condition while the Caputo derivatives will only 

require 
( )af

 as an initial condition. 

Finally, we observed that in calculating the fractional differential equation , the Caputo fractional derivative will first be 

written as a Convolution equation and both Laplace transform and inverse Laplace transform can be apply to obtain the 

general solution. 
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