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ABSTRACT: In this paper, we discussed the existence of one explicit solution and apply a numerical method to test the reliability of 

a system of three, first order ordinary differential equations dependent on the choice of distribution function 𝑝(𝑥) The paper further 

shows how to determine the moments of the time to ruin in the Sparre Andersen risk model by evaluating and employing a function 

form for 𝜙. The work also discovered that the second order integro-differential equation might not have an explicit solution for a given 

probability function 𝑝(𝑥) 
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1. INTRODUCTION 

The Sparre Andersen risk process model was considered to recreate some of the studies in [1]. The claim inter-arrival distribution is 

Erlang (2, 𝛽) used for analyzing the behavior of an explicit solution. This problem was studied before by [2] which considered the 

classic risk model. Modelling an insurance company who experiences two opposing cash flows, the incoming cash premiums and 

outgoing claims will allow us to evaluate expressions for moments of time to ruin, given that ruin occurs. Dickson and Hipp defined 

an auxiliary function along the lines of Hans Gerber and Elias Shin in [3] on which the moments of time to ruin are dependent. 

In [9], a closed-form representation for the distribution of the ruin time for the Sparre Andersen model with exponentially distributed 

claim was studied while in [8], it was extended to the process with Erlang inter-claim times which was illustrated and the results in the 

cases of gamma and mixed exponential inter-claim time distribution was seen. Considering a risk process where the claims occur is 

distributed as Erlang. (2, 𝛽), we assume that the time between claims (including the time until the first claim) form a sequence of 

independent and equal distributed random variables, denoted as {𝑇𝑖}𝑗=1
∞ , with probability density function given by 

    𝑘(𝑡) =  { 0 
𝛽2𝑡𝑒−𝛽𝑡 

,𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
𝑡>0     (1) 

 The Sparre Andersen risk process defined as         𝑈𝑖 =

𝑢 + 𝑐𝑡 − ∑ 𝑋𝑗
𝑁𝑡
𝑗=1     (2) 

Where 𝑢 ≥ 0 is the initial surplus, 𝑐 > 0 denotes the cash premium, which are received continuously at a constamt rate per unit time, 

𝑁𝑡 is the mumber of claims up until time 𝑡 and {𝑇𝑖}𝑗=1
∞ , are independent and identically distributed random variables, where 𝑋𝑗 is the 

amount of the 𝑗th  claim. We define 𝑝 to be the distribution function of 𝑋𝑗 and then assume throughout that 𝑋𝑗 has a density function 

𝑝(𝑥)[1]. Let 𝑇 = 𝑖𝑛𝑓{𝑡 ∣ 𝑈𝑡 < 0} denote the time of ruin (𝑇 = ∞ if ruin does not occur). Then we consider the probability of ultimate 

ruin as a function of the initial surplus 𝑈0 = 𝑢 ≥ 0 [3],. 

𝜓(𝑢) = Pr (𝑇 < ∞ ∣ 𝑈0 = 0) 

Dickson and Hipp here introduced the Gerber-Shiu function to đefine 𝜙. 
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𝜙(𝑢) = 𝐸[𝑒−𝛿𝑇1{𝑇<∞}∣𝑈0=𝑢], 

Where 𝛿 can be interpreted as a force of interest and 1 {. } is the usual indicator function [19]. Here we must note that if 𝛿 = 0, 𝜙(𝑢) =
𝜓(𝑢). By Dickson and Hipp [1], we have 

(−1)𝑘
𝑑𝑘

𝑑𝛿𝑘
𝜙(𝑢)|

𝛿=0

= 𝐸[𝑇𝑘1{𝑇 < ∞} ∣ 𝑈0 = 𝑢] 

And can use this to find moments of time to ruin. 

 

2. FORMULATION OF SECOND ORDER INTEGRO-DIFFERENTLAL EQUATION FOR 𝜙 

Given the Gerber-Shiu function (3) our immediate goal is to derive a functional equation for 𝜙. If we consider the time interval 

(0, ∞), then we condition on the time 𝑡 and the amount 𝑥 of the first claim in this time interval [5] [7]. Note that the probability that 

there is no claim on (0, ∞) is 0 and the probability that the first claim occurs on some interval 𝑡, 𝑡 + 𝑑𝑡 is 𝑘(𝑡)𝑑𝑡 and 𝑢 + 𝑐𝑡 < 𝑥 

means that ruin has occurred with the first claim [3][6]. 

 

Thus conditioning on the time and the amount of the first claim, we are able 

to form the following equation 

𝜙(𝑢) = ∫ 𝑘(𝑡)𝑒−𝛿𝑡 ∫ 𝜙(𝑢 + 𝑐𝑓 − 𝑥)𝑝(𝑥)𝑑𝑥𝑑𝑡 +
𝑢+𝑐𝑡

0

∞

0
 ∫ 𝑘(𝑡)𝑒−𝛿𝑡 ∫ 𝑝(𝑥)𝑑𝑥𝑑𝑡

∞

𝑢+𝑐𝑡

∞

0
 (5)  

Applying the change of variable to (5) yields  

𝛼𝜙(𝑢) = ∫
𝑢

∞
 𝑘 (

𝑠−𝑢

𝑐
) 𝑒−𝛿(𝑠−𝑢)/𝑐∫

0

𝑠
 𝜙(𝑠 − 𝑥)𝑝(𝑥)𝑑𝑥𝑑𝑠 + ∫

𝑢

∞
 𝑘 (

𝑠−𝑢

𝑐
) 𝑒−𝛿(𝑠−𝑢)/𝑐∫

𝑠

𝑠
 𝑝(𝑥)𝑑𝑥𝑑𝑠 (6)  

Applying a limit for the improper integral and then differentiating (6) gives 

lim
𝛾→+∞

(𝑐
𝑑𝜙

𝑑𝑢
)

 

= −
1

𝑐
{∫ 𝑘′ (

s − 𝑢

𝑒
) 𝑒−𝛿(𝑠−𝑢)/𝑐 ∫ 𝜙(𝑠 − 𝑢)𝑝(𝑥)𝑑𝑥𝑑𝑠 + ∫ 𝑘′ (

s − 𝑢

𝑒
) 𝑒−𝛿(𝑠−𝑢)/𝑐 ∫ 𝑝(𝑥)

∞

𝑠

∞

𝑢

∞

𝑠

∞

𝑢

} 

Hence, substituting 𝑘′ (
s−𝑢

𝑒
) = 𝛽2𝑒−𝛽(𝑠−𝑢)/𝑐 − 𝛽𝑘 (

s−𝑢

𝑐
) into (7) we obtain the following result (8)  

Thus, we have the following first order integro-differential equation. 

𝑐2 𝑑𝜙

da
− (𝛽 + 𝛿)𝑐𝜙(𝑢) = − ∫

𝑢

∞
 𝛽2𝑒−

(𝛽+𝛿)(𝑠−𝑢)

𝑐 ∫
0

𝑠
 𝜙(𝑠 − 𝑥)𝑝(𝑥)𝑑𝑥𝑑𝑠 − ∫

𝑢

∞
 𝛽2𝑒−

(𝛽+𝛿)(𝑠−𝑢)

𝑐 ∫
𝑠

∞
 𝑝(𝑥)𝑑𝑥𝑑𝑠  (9) 

Again, applying a limit for the improper integral and then differentiating 

(9) we obtained the following result. 

lim𝛾→+∞   [𝑐2
𝑑2𝜙

𝑑𝑢2
− (𝛽 + 𝛿)𝑐

𝑑𝜙

𝑑𝑢
] = 

(𝛽 + 𝛿)𝑐
𝑑𝜙

𝑑𝑢
− (𝛽 + 𝛿)2𝜙(𝑢) + 𝛽2∫

0

𝑢
 𝜙(𝑢 − 𝑥)𝑝(𝑥)𝑑𝑥 + 𝛽2(1 − 𝑝(𝑢)) (10) 

Hence, we have successfully obtained the second order integro-differential equation satisfying 𝜙 as given below: 
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𝑐2
𝑑2𝜙

𝑑𝑢2
− 2(𝛽 + 𝛿)𝑐

𝑑𝜙

𝑑𝑢
+ (𝛽 + 𝛿)2𝜙(𝑢) = 𝛽2∫

0

𝑢
 𝜙(𝑢 − 𝑥)𝑝(𝑥)𝑑𝑥 + 𝛽2(1 − 𝑝(𝑢))(11) 

 

3. LUNDBERG's FUNDAMENTAL EQUATION 

By the terminology of Gerber and Shiu [3], we define Lundberg's fundamental equation for the model [1]. 

𝑙(𝑠) = 𝑐2𝑠2 − 2(𝛽 + 𝛿)𝑐𝑠 + (𝛽 + 𝛿)2 

Where 𝛿 is strictly positive. By Dickson and Hipp [1], at 𝑠 = 0 we have 

𝑙(0) = (𝛽 + 𝛿)2 > 𝛽2 = 𝛽2𝑝∗(0) 

Where 𝑝∗(𝑠) defines the Laplace transform of 𝑝(𝑡)[4]. Differentiating 𝑖, we have 

𝑙′(𝑠) − 2𝑐2𝑠 − 2(𝛽 + 𝛿)𝑐 

Setting𝑙′(𝑠) = 0, we find that 𝑙 has a tuming point at 

𝑠 =
𝛽 + 𝛿

𝑐
 

Further 𝑙′(𝑠) = 2𝑐2 > 0 hence 𝑙(𝑠) has its minimum at 𝑠 =
𝛽+δ

𝑐
. Now we may note that,𝑙 (

𝛽+𝛿

𝑐
) = 0, 𝑙(𝑠) = lim𝑠→∞   = ∞ 

and 

𝑑

𝑑𝑠
𝛽2𝑝∗(𝑠) = 𝛽2 ∫  

∞

0

𝑥𝑒−s𝑥𝑝(𝑥)𝑑𝑥 < 0 

so 𝛽2𝑝∗(𝑠) is a decreasing function of 𝑠 and is always positive. Hence, 

𝑙(𝑠) = 𝛽2𝑝∗(𝑠) = 0, 𝑠 > 0 

at two distinct points, one on each side of 

𝑠 =
𝛽 + 𝛿

𝑐
 

4 THE EXPLICIT SOLUTION 𝜙(𝑢) = (1 −
𝑅

𝛼
) 𝑒−𝑅𝑢  

Where Dickson and Hipp considered two individual claim amount distributions, both a mixture of two exponentials and a single 

exponential. we only consider the latter case. We will show how to find the moments of the time to ruin in the Sparre Andersen risk 

model by evaluating and employing a function form for𝜙[6]. 

𝑃(𝑥) = 1 − 𝑒−𝛼𝑥, 𝑥 > 0 

By a simple change of variable 𝑠 = 𝑢 − 𝑥 in the integral, we can rearrange  

(11) to form the following equation 

𝑐2
𝑑2𝜙

𝑑𝑢2
− 2(𝛽 + 𝛿)𝑐

𝑑𝜙

𝑑𝑢
+ (𝛽 + 𝛿)2𝜙(𝑢) = 𝛽2∫

0

∞
 𝜙(𝑠)𝑝(𝑢 − 𝑠)𝑑𝑠 + 𝛽2(1 − 𝑝(𝑢)) 

Hence, for our form of 𝑃(𝑥), (15)becomes 
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𝑐2
𝑑2𝜙

𝑑𝑢2
− 2(𝛽 + 𝛿)𝑐

𝑑𝜙

𝑑𝑢
+ (𝛽 + 𝛿)2𝜙(𝑢) = 𝛽2𝑒−𝛼𝑥[𝛼∫

0

∞
 𝜙(𝑥)𝑒𝛼𝑥𝑑𝑥 + 1] 

Differentiating (16), we shall have a 3rul order ordinary differential equation as follows: 

𝑐2
𝑑2𝜙

𝑑𝑢2
− 2(𝛽 + 𝛿)𝑐

𝑑𝜙

𝑑𝑢
+ (𝛽 + 𝛿)2𝜙(𝑢) = 𝛼𝛽2 ∫  

∞

0

 𝜙(𝑥)𝑒−𝑎(𝑢−𝑥)𝑑𝑥 + 𝛽2𝑒−𝛼𝑣

= −𝛼𝛽2𝑒−𝛼𝑥 [𝛼 ∫  
𝛼

0

 𝜙(𝑥)𝑒𝑎𝑥𝑑𝑥 + 1]

𝑐2
𝑑3𝜙

𝑑𝑢3
+ [𝛼𝑐2 − 2(𝛽 + 𝛿)𝑐]

𝑑2𝜙

𝑑𝑢2
+ [(𝛽 + 𝛿)2 − 2𝛼(𝛽 + 𝛿)𝑐]

𝑑𝜙

𝑑𝑢
+ [𝛼(𝛽 + 𝛿)2 − 𝛼𝛽2]𝜙(𝑢) = 0

(17)

 

Given (14), we can calculate𝑝(𝑥) = 𝑎𝑒−𝛼𝑥, since 𝑝(𝑥) is just the anti-derivative of 𝑝(𝑥). Substituting 𝑝(𝑥) into(13), we obtained the 

result with 

𝑝∗(𝑠) =
𝛼

𝑠 + 𝛼

𝑐2𝑠2 − 2(𝛽 + 𝛿)𝑐𝑠 + (𝛽 + 𝛿)2 −
𝛼𝛽2

𝑠 + 𝛼
= 0

 

⇒ 𝑐2𝑠2 + [𝑎𝑐2 − 2(𝛽 + 𝛿)𝑐]𝑠2 + [(𝛽 + 𝛿)2 − 2𝛼(𝛽 + 𝛿)𝑐]𝑠 + [𝑎(𝛽 + 𝛿)2 − 𝛼𝛽2] = 0   (18) 

 

Hence, the auxiliary equation of (17) has equal roots to the Lundeberg equation with substituted 𝑝(𝑥) into(18). These roots are 

𝑟1, 𝑟2, −𝑅 and so we have the general solution for   𝜙(𝑢). 

𝜙(𝑢) = 𝜂1𝑒𝑟1𝑢 + 𝜂2𝑒𝑟2𝑢 + 𝜂3𝑒−𝑅𝑢       (19) 

Now as 𝜙(𝑢) → 0 as 𝑢 → ∞, we must have that the coeflicients 𝜂1 = 𝜂2 = 0 resulting to 

𝜙(𝑢) = 𝜙(0)𝑒−𝑅𝑢  

After substituting (20) into (16), we have that 

𝜙(0) = 1 −
𝑅

𝛼
 

and thus, our explicit solution for 𝜙 is given by 

𝜙(𝑢) = (1 −
𝑅

𝛼
) 𝑒−𝑅𝑢 

4.1. A numerical method. For complex equation it can be somehow difficult to evaluate an analytical solution. However, it is 

possible that for the second order integro-differential equation (11), may not have an explicit solution for given probability 

function𝑃(𝑥). In such situation, a numerical method should be employed to assess the behaviour of 𝜙(𝑢) as 𝑢 → ∞. 

 

Though, it is simpler to apply a numerical method to an ordinary differential equation rather than an integro-differential equation. we 

can choose to employ numerical method to the third order ordinary differential equation ( 17) as it is equivalent to the second order 

integro-differential equation (11). 
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4.2 Third order ordinary differential equation 

  

The third order ordinary differential equation (11), can be reduced to s system of three first order, ordinary differential equations to 

enable us apply a numerical method. If we make the two substitutions, 

𝜔(𝑢) =
𝑑𝑋

𝑑𝑢
, 𝑋(𝑢) =

𝑑𝜙

𝑑𝑢
 

Then, we are able to reduce (11) to the following system. 

𝑑𝜙

𝑑𝑢
= 𝑋(𝑢)

𝑑𝑋

𝑑𝑢
= 𝜔(𝑢)

𝑑𝜔

𝑑𝑢
= −

1

𝑐2
[(𝛼2𝑐2 − 2(𝛽 + 𝛿)𝑐)𝜔(𝑢) + ((𝛽 + 𝛿)2 − 2𝛼(𝛽 + 𝛿)𝑐)𝑋(𝑢) + (𝛼(𝛽 + 𝛿)2 − 𝛼𝛽2)𝜙(𝑢)]

(22)  

 4.3 The explicit Euler method and the system of ordinary differential equations 

 

Using the explicit Euler method to (22), the system becomes; 

𝜙𝑛+1 = 𝜙𝑛 + ℎ𝑋𝑛

𝜙𝑛+1 = 𝑋𝑛 + ℎ𝜔𝑛
 

𝜔𝑛+1 = 𝜔𝑛 −
ℎ

𝑐2
[(𝛼𝑐2 − 2(𝛽 + 𝛿)𝑐)𝜔𝑛 + ((𝛽 + 𝛿)2 − 2𝛼(𝛽 + 𝛿)𝑐)𝑋𝑛 + (𝛼(𝛽 + 𝛿)2 − 𝛼𝛽2)𝜙𝑛] 

 

With initial conditions, 𝜙𝑜, 𝑋𝑜 and 𝜔𝑜 and where 𝜙n = 𝜙(𝑛ℎ), 𝑋𝑛 =  𝑋(𝑛ℎ), 𝜔𝑛 = 𝜔(𝑛ℎ) and ℎ is the step length. 

 

4.2. Relationship of numerical and explicit solutions. Given an explicit solution (21), and the numerical method for the system of 

ordinary differential equations, graphs are drawn to see the relationship of the numerical solution with that of explicit solution. 

 

Figure1:  Relationship of the numerical solution with initial   conditions  

𝜙1 = 1 −
𝑅

𝛼
, 𝑋0 = 𝑅 +

𝑅2

𝛼
 𝑎𝑛𝑑 𝜔0 = 𝑅2 −

𝑅3

𝛼
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Figure 2: Relationship of the explicit solution. 

5. DISCUSSIONS 

We have seen that the relationship between numerical and explicit solutions in figures 1 and 2 respectively are similar when𝜙(𝑢) →
0 as 𝑢 → ∞. This gives a good indication that if we are unable to evaluate an explicit solution for a given probability function 𝑝(𝑥). 

The chosen numerical method applied to the system of three, first order ordinary differential equations will be dependent on the 

choice of distribution function 𝑝(𝑥). We then know that we will be able to assess the ruin for other solutions and probability functions 

without need to find an explicit solution. 

6. CONCLUSION 

In conclusion, we have been able to see the reliability of a system of three. first order ordinary differential equations using Sparre 

Andersen process. Also, the moments of the time to ruin in the Sparre Andersen risk model by evaluating and employing a function 

form for 𝜙, for 𝑝(𝑥) = 𝑎𝑒−𝛼𝑥. Similarly, in a case where a second order integro-differential equation has no explicit solution for a 

given probability function 𝑝(𝑥), a numerical method should be employed to show the relationship between the numerical and explicit 

solutions which have proven that it only depends on the choice of distribution function of 𝑝(𝑥) as 𝑢 → ∞. which will result to having 

a similar relationship. 
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